

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/41

Paper 4 Mechanics May/June 2022

1 hour 15 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.
- Where a numerical value for the acceleration due to gravity (g) is needed, use 10 m s⁻².

INFORMATION

- The total mark for this paper is 50.
- The number of marks for each question or part question is shown in brackets [].

This document has 16 pages. Any blank pages are indicated.

(a)	Find the time for which the car is accelerating.	[2
(a)	Third the time for which the car is accelerating.	L
		•••••
(b)	Sketch the velocity–time graph for the motion of the car, showing the key points.	[2
(c)	Find the average speed of the car during its motion.	[2
		••••••

Two particles P and Q, of masses 0.5 kg and 0.3 kg respectively, are connected by a light inextensible

Find the acceleration of the particles and the tension in the string connecting them.	
	••••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••

© UCLES 2022 9709/41/M/J/22

A crate of mass 300kg is at rest on rough horizontal ground. The coefficient of friction between the

Find the greatest value of X for which the crate remains at rest.	[5

Three coplanar forces of magnitudes $20\,\mathrm{N}$, $100\,\mathrm{N}$ and $F\,\mathrm{N}$ act at a point. The directions of these forces are shown in the diagram.

Given that the three forces are in equilibrium, find F and α .	[6]

© UCLES 2022 9709/41/M/J/22

traci	o racing cars A and B are at rest alongside each other at a point O on a straight horizontal test. The mass of A is 1200 kg. The engine of A produces a constant driving force of 4500 N. When the rrives at a point P its speed is $25 \mathrm{ms^{-1}}$. The distance OP is d m. The work done against the stance force experienced by A between O and P is 75000 J.
(a)	Show that $d = 100$. [3]

9709/41/M/J/22 © UCLES 2022

Car B starts off at the same instant as car A. The two cars arrive at P simultaneously and with the same speed. The engine of B produces a driving force of 3200 N and the car experiences a constant resistance to motion of 1200 N.

			•••••	•••••		•••••
•••••				•••••		
•••••						•••••
••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	••••••	•••••
	ly speed which					
Find the stead at <i>P</i> .		$oldsymbol{\mathit{B}}$ can mainta	in when its en	gine is workii	ng at the same	rate as
Find the stead at <i>P</i> .	ly speed which	B can mainta	in when its en	gine is workii	ng at the same	rate as
Find the stead at <i>P</i> .	ly speed which	B can mainta	in when its en	gine is workii	ng at the same	rate as
Find the stead at <i>P</i> .	ly speed which	B can mainta	in when its en	gine is workii	ng at the same	rate as
Find the stead at <i>P</i> .	ly speed which	B can mainta	in when its en	gine is workii	ng at the same	rate as
Find the stead	ly speed which	B can mainta	in when its en	gine is workin	ng at the same	rate as
Find the stead	ly speed which	B can mainta	in when its en	gine is workin	ng at the same	rate as
Find the stead	ly speed which	B can mainta	in when its en	gine is workin	ng at the same	rate as
Find the stead	ly speed which	B can mainta	in when its en	gine is workin	ng at the same	rate as

6	A particle starts from a point O and moves in a straight line. The velocity $v \text{m s}^{-1}$ of the particle at time $t \text{s}$ after leaving O is given by
	$v = k(3t^2 - 2t^3)$.

 $v = k(3t^2 - 2t^3),$

where k is a constant.

(a)	Verify that the particle returns to O when $t = 2$.	[4]
		•••••

© UCLES 2022 9709/41/M/J/22

]	Find k and hence find the total distance travelled in the first two seconds of motion.
•	
•	
•	
•	
•	
•	

	test slope of a smooth plane. The plane is inclined at 30° to the horizontal, and A is higher up the than B . When the particles collide, the speeds of A and B are $3 \mathrm{ms^{-1}}$ and $2 \mathrm{ms^{-1}}$ respectively e collision between the particles, the speed of A is reduced to $2.5 \mathrm{ms^{-1}}$.
(a)	Find the speed of <i>B</i> immediately after the collision.
	Show that the speed of B immediately after it hits the barrier is $0.5 \mathrm{ms^{-1}}$. Hence find the spe of the combined particle immediately after the second collision between A and B .

© UCLES 2022 9709/41/M/J/22

••••••
•••••

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.		
	••	
	••	
	••	
	••	
	••	
	••	
	••	
	••	
	••	