

Cambridge IGCSE[™]

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 0580/43

Paper 4 (Extended) May/June 2022

2 hours 30 minutes

You must answer on the question paper.

You will need: Geometrical instruments

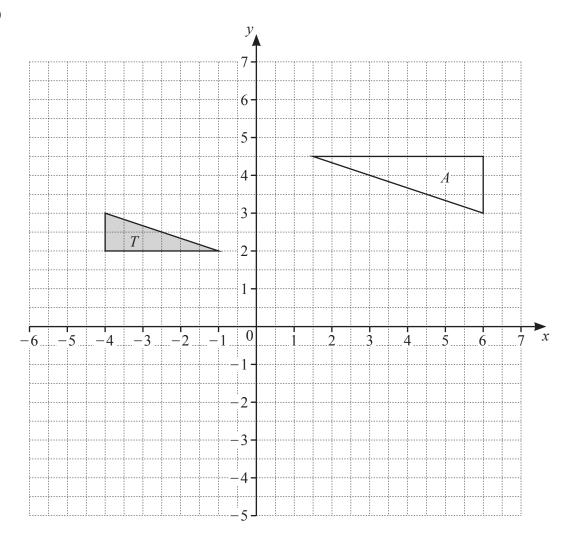
INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You should use a calculator where appropriate.
- You may use tracing paper.
- You must show all necessary working clearly.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.
- For π , use either your calculator value or 3.142.

INFORMATION

- The total mark for this paper is 130.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Any blank pages are indicated.


1 Here is part of a bus timetable.

Abbots	06 50	08 25	09 20
Callet	07 12	08 47	09 42
North Moor	07 30	09 05	10 00
South Moor	07 37	09 12	10 07
Centre Point	08 00	09 35	10 30

		Centre Point	08 00	09 35	10 30		
(a)	Rashid catches th	ne 09 20 bus at Abbot	S.				
	Find the time the	bus arrives at South	Moor.				
							[1]
(b)		me at 8.27 am and talext bus to Centre Poi		utes to wall	to the bus	stop at Callet.	
	Find the total tim	e, in minutes, for her	journey fro	om leaving	home to ar	riving at Centre Point.	
						min	[2]
(c)		m Abbots to Centre Pone same time for the ju		km.			
		erage speed of a bus for in kilometres per ho		ney.			
						km/h	[2]
(d)	The ratio of adult The cost for an adult	all 56 seats on the busts to children on this just ticket is \$2.80. ild ticket is $\frac{3}{4}$ of the a	journey is	adults : chi	ldren = 5 :	3.	
		al cost of the tickets for		ney.			

\$[4]

2 (a)

- (i) Draw the image of triangle T after a reflection in the line y = x. [2]
- (ii) Draw the image of triangle T after a translation by the vector $\begin{pmatrix} -1\\3 \end{pmatrix}$. [2]
- (iii) Describe fully the **single** transformation that maps triangle T onto triangle A.

(b) A quadrilateral P is enlarged by a scale factor of 1.2 to give quadrilateral Q. The area of quadrilateral P is $20 \,\mathrm{cm}^2$.

Calculate the area of quadrilateral Q.

cm ²	[2]
	[4]

(a) The table shows the numbers of tigers reported to be living in the wild in the year 2014 in some 3 countries.

Country	Number
India	2226
Indonesia	371
Nepal	198
Bangladesh	106

		India	2226	
		Indonesia	371	
		Nepal	198	
		Bangladesh	106	
(i)	Using the ta	able,		
	(a) find th	e number of tigers in Nepal a	s a percentage of the numb	er of tigers in Bangladesh,
		ne ratio tigers in Bangladesh r in its simplest form.		
(ii)		later, the number of tigers representage increase in the population	orted in India was 2967.	[2]
(iii)	year 2010.	r of tigers in India in the year mber of tigers in India in the	ar 2014 is approximately 3	
		inswer correct to the nearest i	~	

.....[3]

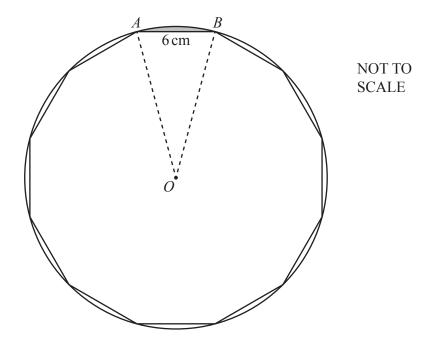
(b) At the start of June, a hive has a population of 2000 bees. Three months after the start of June the hive has a population of 2662 bees.

The population of this hive can be calculated using the formula

$$P = ab^x$$
,

where P is the population of the hive x months after the start of June.

By finding the value of *a* and the value of *b*, calculate the population of the hive 7 months after the start of June.


Give your answer correct to the nearest integer.

 [5]

- 4 A regular 12-sided polygon has side length 6 cm.
 - (a) Show that one interior angle of the polygon is 150°.

[1]

(b) The polygon is enclosed by a circle, centre *O*, so that each vertex touches the circumference of the circle.

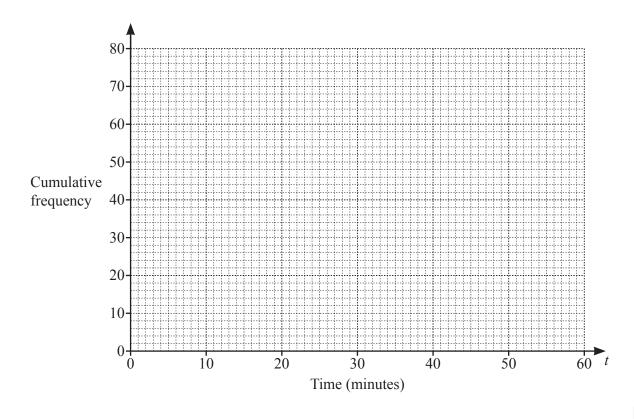
(i) Show that the radius, AO, of the circle is 11.6 cm, correct to 1 decimal place.

[3]

(ii)	Cal	culate	
	(a)	the circumference of the circle,	
			cm [2]
	(b)		
			cm [2]
The	regu	ular 12-sided polygon is the cross-section of a prism of leng	th 2 cm.
Calo	culat	e the volume of the prism.	
			cm ³ [3]
	The	(a) (b)	(a) the circumference of the circle,

5 The time, *t* minutes, taken by each of 80 people to travel to work is recorded. The table shows information about these times.

Time (t minutes)	0 < <i>t</i> ≤ 5	5 < <i>t</i> ≤ 10	$10 < t \le 20$	20 < t ≤ 35	$35 < t \le 60$
Frequency	3	7	18	28	24


(a)	(i)	Write down the class interval containing the median time.
	(ii)	$< t \le \dots $ [1] Calculate an estimate of the mean time.
(L)	(2)	min [4]
(b)	(i)	One of these 80 people is chosen at random. Find the probability that this person took longer than 10 minutes to travel to work. Give your answer as a fraction in its simplest form.
		[2]
	(ii)	Two people are chosen at random from those taking 20 minutes or less to travel to work.
		Calculate the probability that one of these people took 5 minutes or less and the other took more than 5 minutes.
		[3]

(c) (i) Use the frequency table on page 8 to complete the cumulative frequency table.

Time (t minutes)	<i>t</i> ≤ 5	<i>t</i> ≤ 10	<i>t</i> ≤ 20	<i>t</i> ≤ 35	<i>t</i> ≤ 60
Cumulative frequency	3	10			80

(ii) On the grid, draw a cumulative frequency diagram to show this information.

[1]

[3]

(iii) Find an estimate for the 80th percentile.

..... min [2]

(iv) Find an estimate for the percentage of people who took longer than 45 minutes to travel to work.

Show all your working

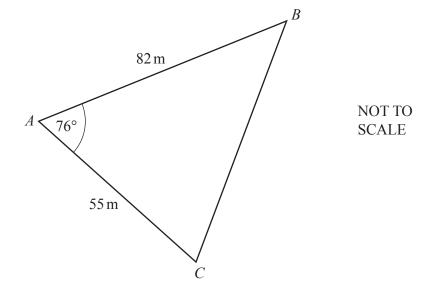
Show all your working.

..... % [3]

		10	
6	(a)	Simplify. $a-2b-3a+7b$	
	(b)	Expand and simplify. $4(x-5) - (3-2x)$	[2]
	(c)	Write as a single fraction in its simplest form. $\frac{3}{x-5} - \frac{7}{2x}$	[2]
			[3]

(d) Solve.

$$\frac{13-4x}{3} = 6-x$$


x = [3]

(e) Make *x* the subject of the formula.

$$y = \frac{5(p-2x)}{x}$$

$$x = \dots$$
 [4]

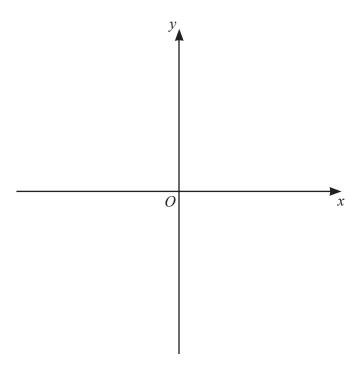
7

The diagram shows a field ABC.

(a) Calculate BC.

$$BC = \dots m [3]$$

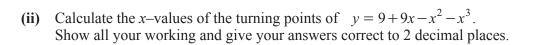
(b) Calculate angle *ACB*.


Angle
$$ACB = \dots$$
 [3]

(c)	A gate, G , lies on AB at the shortest distance from C .
	Calculate AG .
	$AG = \dots m [3]$
(4)	
(u)	A different triangular field PQR has the same area as ABC . PQ = 90 m and $QR = 60 m$.
	Work out the two possible values of angle <i>PQR</i> .
	Angle $PQR = \dots$ or \dots [5]

(a) A has coordinates $(-2,7)$, B has coordinates $(1,-5)$ and C has coordinates $(5,4)$.					
	(i)	Find the coordinates of the midpoint of the line AB			
			() [2]	
	(ii)	Find \overrightarrow{AC} .			
			/		
			$\overrightarrow{AC} = \left(\begin{array}{c} \\ \end{array} \right)$	[2]	
	(iii)	Find $ \overrightarrow{AC} $.			
				[2]	
	(iv)	Find the equation of the line AB. Give your answer in the form $y = mx + c$.			
			v =	[3]	
			<i>y</i> =	[ع]	

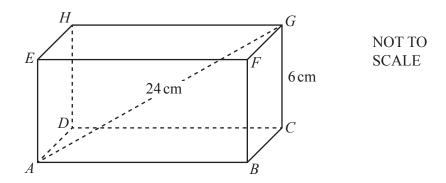
	(v)		equation of the ranswer in the				that pass	es through C.		
							<i>y</i> =			[3]
(b)	The	graphs of	y + 5x = 8	and	$y = 2x^2$	+6x-13	intersect	at the points P	and Q .	
		l the coord w all your	linates of <i>P</i> a working.	nd the	coordinat	es of Q.				


9 (a) Sketch the graph of y = (x+1)(3-x)(3+x), indicating the coordinates of the points where the graph crosses the x-axis and the y-axis.

[4]

(b) (i) Show that y = (x+1)(3-x)(3+x) can be written as $y = 9+9x-x^2-x^3$.

[2]


$$x = \dots, x = \dots$$
 [7]

(iii) The equation $9+9x-x^2-x^3=k$ has one solution only when k < a and when k > b, where a and b are integers.

Find the maximum value of a and the minimum value of b.

$$a = \dots b = \dots [3]$$

10

The diagram shows a cuboid ABCDEFGH. CG = 6 cm, AG = 24 cm and AB = 2BC.

(a) Calculate AB.

$AB = \dots $ cr	n [4]
------------------	-----	----

(b) Calculate the angle between AG and the base ABCD.

.....[3]