

Cambridge IGCSE[™]

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 0580/42

Paper 4 (Extended)

October/November 2022

2 hours 30 minutes

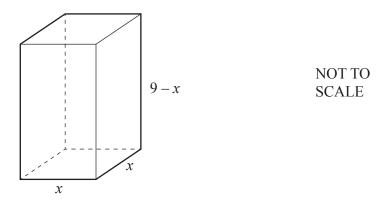
You must answer on the question paper.

You will need: Geometrical instruments

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You should use a calculator where appropriate.
- You may use tracing paper.
- You must show all necessary working clearly.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.
- For π , use either your calculator value or 3.142.

INFORMATION


- The total mark for this paper is 130.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Any blank pages are indicated.

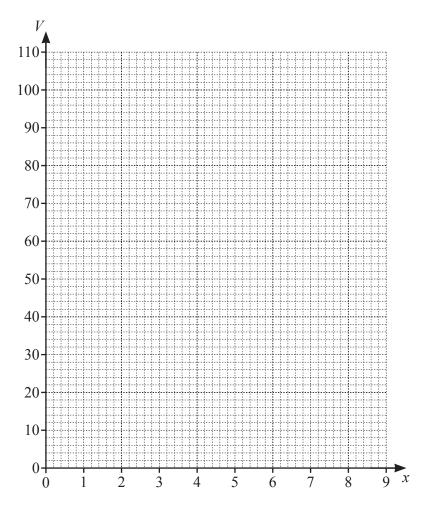
(a) (i)	At a football club, season tickets are sold for seated areas and for standing areas. The cost of season tickets are in the ratio seated: standing = 5:3. The cost of a season ticket for the standing area is \$45.
	Find the cost of a season ticket for the seated area.
(ii)	\$
	Find the value in 2022.
	\$ million [2]
(iii)	The number of people at a football match is 1455. This is 6.25% of the total number of people allowed in the stadium.
	Find the total number of people allowed in the stadium.
	[2]
(iv)	The average attendance increased exponentially by 4% each year for the three years from 2016 to 2019. In 2019 the average attendance was 1631.
	Find the average attendance for 2016.
	[3]

				3		
(b)				xets for individuals and tickets sold is in the	nd for families. e ratio family : individ	dual = 2 : 7.
	(i)	The number of	family se	eason tickets sold is x		
		Write an expre	ssion, in t	terms of x , for the number	nber of individual sea	son tickets sold.
	(ii)	In 2019, the nu season tickets		•		d the number of individual
		Complete the t year.	able by w	riting expressions, ir	terms of x , for the nu	umber of tickets sold each
		Ye	ar	Family tickets	Individual tickets	
		20	18	x		
		20	19			
						[2]
((iii)	In 2019, the nutickets sold.	umber of i	individual season tick	xets sold is 3 times the	number of family season
		Write an equat	ion in x aı	nd solve it to find the	number of family tick	tets sold in 2018.
		1			, and the second	
					v –	[4]
					x —	[4]

2 All the lengths in this question are measured in centimetres.

The diagram shows a solid cuboid with a square base.

(a) The volume, $V \text{cm}^3$, of the cuboid is $V = x^2(9-x)$. The table shows some values of V for $0 \le x \le 9$.


x	0	1	2	3	4	5	6	7	8	9
V	0	8		54	80	100	108	98	64	0

(i) Complete the table.

[1]

- (ii) On the grid on the opposite page, draw the graph of $V = x^2(9-x)$ for $0 \le x \le 9$. [4]
- (iii) Find the values of x when the volume of the cuboid is $44 \,\mathrm{cm}^3$.

$$x = \dots$$
 or $x = \dots$ [2]

(b) (i) Show that the total surface area of the cuboid is $(36x-2x^2)$ cm².

[2]

(ii) Find the surface area when the volume of the cuboid is a maximum.

..... cm² [3]

3 Kai and Ann carry out a survey on the distances travelled, in kilometres, by 200 cars.

Kai completes this frequency table for the data collected.

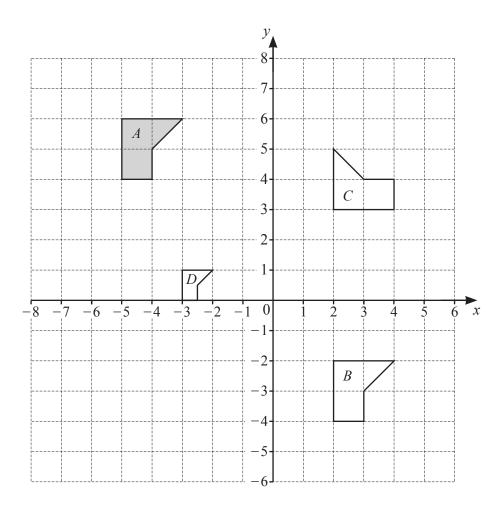
Distance (dkm)	80 < <i>d</i> ≤ 100	$100 < d \leqslant 150$	150 < <i>d</i> ≤ 200	200 < <i>d</i> ≤ 300	$300 < d \leqslant 400$
Frequency	7	33	76	52	32

(a) (i) Calculate an estimate of the mean.

km	[4]

(ii) Ann uses this frequency table for the same data. There is a different interval for the final group.

Distance (dkm)	80 < <i>d</i> ≤ 100	$100 < d \leqslant 150$	$150 < d \le 200$	200 < <i>d</i> ≤ 300	$300 < d \leqslant 360$
Frequency	7	33	76	52	32

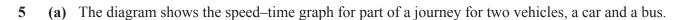

Without calculating an estimate of the mean for this data, find the difference between Ann's and Kai's estimate of the mean.

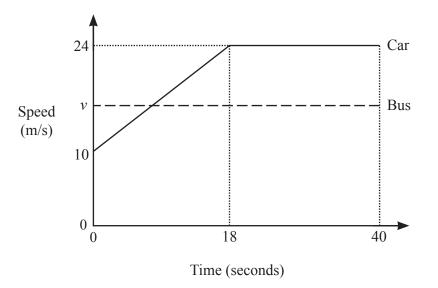
You must show all your working.

kn	n [2]

	(iii)	A histogram is drawn showing the information in Kai's frequency table. The height of the block for the interval $200 < d \le 300$ is $2.6 \mathrm{cm}$.					
		Calculate the height of the block for each of the following intervals.					
		80 < <i>d</i> ≤ 100cm					
		150 < <i>d</i> ≤ 200cm					
		$300 < d \le 400$	[3]				
(b)	One	e car is picked at random.					
	Fine	d the probability that the car has travelled more than 300 km.					
			[1]				
(c)	Two	o of the 200 cars are picked at random.					
	Fine	d the probability that					
	(i)	both cars have travelled 150 km or less,					
			[2]				
	(::)		[2]				
	(ii)	one car has travelled more than 200 km and the other car has travelled 100 km or less.					
			[2]				
			[3]				

4




(a) Describe fully the **single** transformation that maps

(i)	shape A onto shape B ,	
		[2]
(ii)	shape A onto shape C ,	
		[3]
(iii)	shape A onto shape D .	[3]
(111)	Shape II onto shape D.	
		[3]
		L

[2]

(b) On the grid, draw the image of shape A after a reflection in the line y = x + 8.

NOT TO SCALE

(i) Calculate the acceleration of the car during the first 18 seconds.

	$ m/s^2$	[1]
--	----------	-----

(ii) In the first 40 seconds the car travelled 134 m more than the bus.

Calculate the constant speed, *v*, of the bus.

v = m/s [4]

(b) A train takes 10 minutes 30 seconds to travel 16240 m.

Calculate the average speed of the train. Give your answer in kilometres per hour.

6	(a)	Solve.	4x + 15 = 9

x =	 [2]

(b) Factorise. $a^2 - 9$

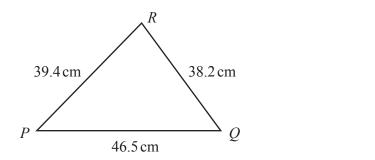
(c) Write as a single fraction in its simplest form.

$$\frac{4a}{5} \div \frac{3ad}{10c}$$

(d)
$$5^n + 5^n + 5^n + 5^n + 5^n = 5^m$$

Find an expression for m in terms of n.

$$m = \dots$$
 [2]


(e) Solve by factorisation.

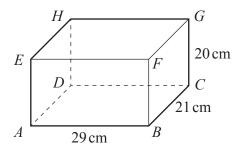
$$4x^2 + 8x - 5 = 0$$

$$x = \dots$$
 or $x = \dots$ [3]

(f)	(i)	y is directly proportional to $(x+3)^3$. When $x = 2$, $y = 13.5$.		
		Find x when $y = 108$.		
			<i>x</i> =	[3]
	(ii)	g is inversely proportional to the square of d . When d is halved, the value of g is multiplied by a	factor n.	
		Find <i>n</i> .		
(a)	Evi	pand and simplify.	<i>n</i> =	[2]
(g)	LA	(2x+3)(x-1)(x+3)		
				[3]
(h)	Fin	d the derivative, $\frac{dy}{dx}$, of $y = 3x^2 + 4x - 1$.		
				[2]

7 (a)

(i) Calculate angle *QPR*.


Angle
$$QPR = \dots$$
 [4]

NOT TO SCALE

(ii) Find the shortest distance from Q to PR.

 cm	[3]

(b) The diagram shows a cuboid.

NOT TO SCALE

(i) Calculate the length AG.

 $AG = \dots$ cm [3]

(ii) Calculate the angle between AG and the base ABCD.

(c)

North

North

North

SCALE

North M 96°

The diagram shows the positions of a lighthouse, L, and two ships, K and M. The bearing of L from K is 155° and $KL = 112 \,\mathrm{km}$. The bearing of K from M is 010° and angle KML = 96°.

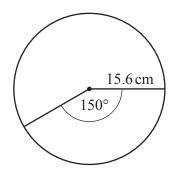
Find the bearing and distance of ship M from the lighthouse, L.

3 AE A i	It is a line with midpoint M . Is the point $(2, 3)$ and M is the point $(12, 7)$.
(a)	Find the coordinates of B .
	(, ,
(b)	Show that the equation of the perpendicular bisector of AB is $2y + 5x = 74$.
	[4]
(c)	The perpendicular bisector of AB passes through the point N . The point N has coordinates $(2, n)$.
	Find the value of n .
	$n = \dots $ [1]
(d)	Points A, M and N form a triangle.
	Find the area of the triangle.

.....[2]

9

- (a) On the diagram, sketch the graph of $y = \sin x$ for $0^{\circ} \le x \le 360^{\circ}$. [2]
- **(b)** Solve the equation $5\sin x + 4 = 0$ for $0^{\circ} \le x \le 360^{\circ}$.


$$x = \dots$$
 or $x = \dots$ [3]

10	(a)	The lengths of the sides of a triangle are 11.4 cm	n, 14.8 cm and 15.7 cm, all correct to 1 decimal
		place.	

Calculate the upper bound of the perimeter of the triangle.

..... cm [2]

(b)

NOT TO SCALE

The diagram shows a circle, radius 15.6 cm. The angle of the minor sector is 150°.

Calculate the area of the minor sector.

..... cm² [2]

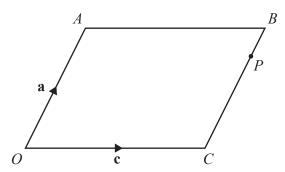
(c)

NOT TO SCALE

The diagram shows a circle, radius r cm and minor sector angle x° .

The **perimeter** of the major sector is three times the **perimeter** of the minor sector.

Show that
$$x = \frac{90(\pi - 2)}{\pi}$$
.


[4]

11 (a)
$$\left| \begin{pmatrix} 9m \\ 40m \end{pmatrix} \right| = \frac{205}{2}$$

Find the two possible values of m.

m = or [3]

(b)

NOT TO SCALE

OABC is a parallelogram.

$$\overrightarrow{OA} = \mathbf{a}$$
 and $\overrightarrow{OC} = \mathbf{c}$.

P is the point on CB such that CP : PB = 3 : 1.

- (i) Find, in terms of a and/or c, in their simplest form,
 - (a) \overrightarrow{AC} ,

$$\overrightarrow{AC} = \dots$$
 [1]

(b) \overrightarrow{CP} ,

$$\overrightarrow{CP} = \dots$$
 [1]

(c) \overrightarrow{OP} .

$$\overrightarrow{OP} = \dots$$
 [1]

© UCLES 2022

(ii) OP and AB are extended to meet at Q.

Find the position vector of Q .		
	[2	2]