

Cambridge IGCSE[™]

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 0580/43

Paper 4 (Extended)

October/November 2022

2 hours 30 minutes

You must answer on the question paper.

You will need: Geometrical instruments

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You should use a calculator where appropriate.
- You may use tracing paper.
- You must show all necessary working clearly.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.
- For π , use either your calculator value or 3.142.

INFORMATION

- The total mark for this paper is 130.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Any blank pages are indicated.

(a) Here are the ingredients needed to make a pasta bake to serve 12 people.

1

		250 g butter		
		600g pasta		
		460 g mushrooms		
		280 g cheese		
		800 ml milk		
(i)	Find the mass of the chee	ese as a percentage of the ma	ass of the mushrooms.	
			%	[1]
(ii)	Find the mass of butter n	eeded to make a pasta bake	to serve 18 people.	
			g	[2]
(iii)		milk and 1.5 kg of each other		
	Calculate the greatest nu	mber of people she can serv	e with pasta bake.	
				[3]

	2019, a packet of pasta cost \$2.40. s was an increase of 25% of the cost of a packet in 2018.
(i)	Work out the cost in 2018.
	\$[2]
(ii)	In 2020, the cost of a packet increased by 15% from the cost in 2019.
	Work out the total percentage increase in the cost of a packet from 2018 to 2020.
A sl	width NOT TO SCALE ta is sold in packets with width 11.5 cm, correct to the nearest 0.5 cm. hop places these packets in a single line on a shelf of length 2 m, correct to the nearest 0.1 m. d the maximum number of these packets that will fit along this shelf. It must show all your working.
	This (i) Pass A sl

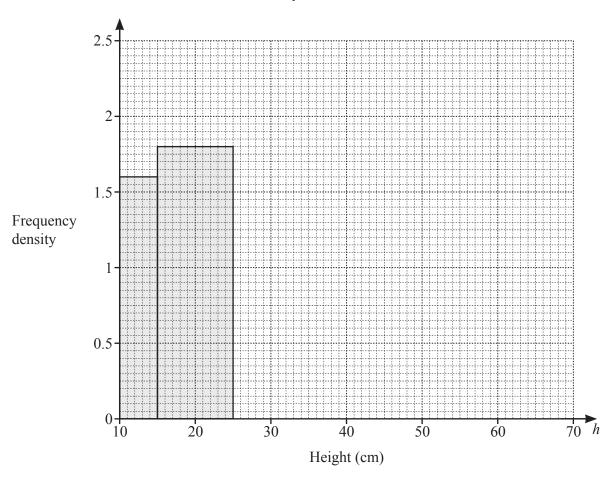
2	(a) Simplify fully. (i) $p^3 \times p^{11}$	
	(ii) $\frac{18m^6}{3m^2}$	[1
	(iii) $\left(\frac{27x^9y^{27}}{64}\right)^{-\frac{1}{3}}$	[2
	(b) A sequence has <i>n</i> th term $3n^2$. Write down the first 3 terms of this sequence.	[3
	(c) Find the <i>n</i> th term for each of these sequences. (i) 13, 16, 19, 22, 25,	[2
	(ii) 3, 17, 55, 129, 251,	[2

.....[2]

/ II	G 1
(\mathbf{d})	Solve.
· u	BUIVE.

$$\frac{3x - 22}{4} = 23$$

		F 2	٦
v	_	1 4	1
л	_	 12	1

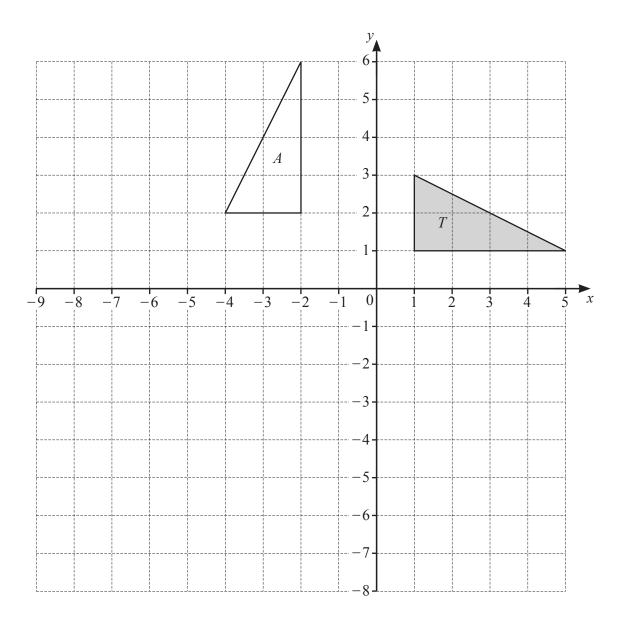

(e)	Use the quadratic formula to solve	$3x^2 + 8x - 20 = 0.$
	Show all your working and give you	ir answers correct to 2 decimal places.

$$x = \dots, x = \dots$$
 [4]

3 The height, $h \, \text{cm}$, of each of 100 plants is recorded. The table shows information about the heights of these plants.

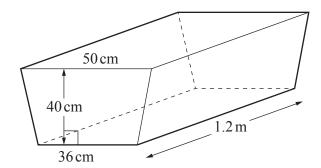
Height (h cm)	$10 < h \leqslant 15$	15 < h ≤ 25	$25 < h \leqslant 40$	$40 < h \leqslant 60$	$60 < h \leqslant 70$
Frequency	8	18	28	33	13

(a) Complete the histogram to show this information. The first two blocks have been drawn for you.



(b) Calculate an estimate of the mean height.

..... cm [4]


[3]

4

- (a) Draw the reflection of triangle T in the line y = -2. [2]
- **(b)** Draw the enlargement of triangle T with scale factor $\frac{1}{2}$ and centre of enlargement (-5, -3). [2]
- (c) Describe fully the **single** transformation that maps triangle T onto triangle A.

______[i

NOT TO SCALE

The diagram shows a water trough in the shape of a prism. The prism has a cross-section in the shape of an isosceles trapezium. The trough is completely filled with water.

(a) Show that the volume of water in the trough is 206.4 litres.

[3]

(b) The water from the trough is emptied at a rate of 600 ml per second.

Calculate the time taken, in minutes and seconds, for the trough to be emptied.

..... minutes seconds [3]

- (c) All the water from the trough is emptied into a vertical cylindrical tank. The depth of the water in the tank is 84 cm.
 - (i) Calculate the radius of the tank.

..... cm [3]

(ii) The tank is 60% full.

Calculate the height of the tank.

(d) $M = \frac{M}{40 \text{ cm}}$ NOT TO SCALE

A steel rod AM is placed inside the empty water trough as shown in the diagram. A is a vertex at the base of the isosceles trapezium and M is the midpoint of the top edge on the opposite face.

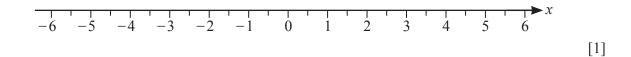
Calculate the length of the steel rod, AM.

6	(a)	$P = 5k^2 - 7$
v	(a)	I - J I

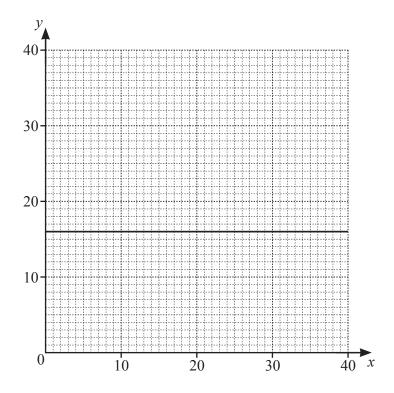
(i) Find the value of P when k = 3.

$$P = \dots$$
 [2]

(ii) Rearrange the formula to make k the subject.


$$k = \dots [3]$$

(b) (i) Solve.

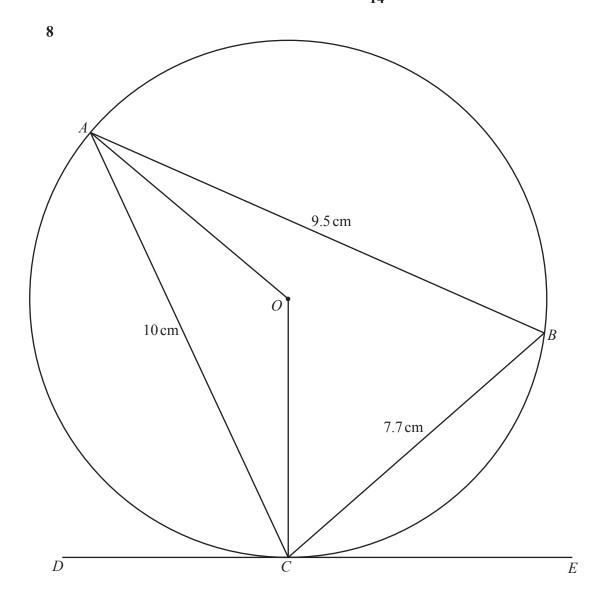

$$x - 3 \le 5x + 7$$

.....[2]

(ii) Show your answer to part (b)(i) on the number line.

(c) The line y = 16 is drawn on the grid.

The region R satisfies the following inequalities.


$$y \ge 16 \qquad x > 2 \qquad 2x + 3y \ge 72 \qquad y \le 32 - x$$

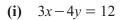
- (i) By drawing three more lines and shading the region **not required**, find and label region R. [6]
- (ii) Find the integer coordinates (x, y) in the region R that give the maximum value of 2x + y.

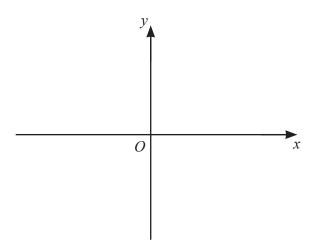
(.....) [2]

Reg	an 1s	playing a	game with the	se six number of	eards.			
	_	-3	$\begin{bmatrix} -2 \end{bmatrix}$	2	3	5	7	
(a)	She		cards at rand	om, without re	placement, and	multiplies the t	wo numbers to	give a
	Fine	d the proba	ability that					
	(i)	the score	is 35					
								[3]
	(ii)	the score	is a positive n	umber.				
			-					
								[3]

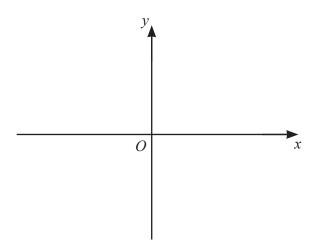
(b)	Regan now takes three cards at random from the six cards, without replacement, and adds the three numbers to give a total.
	Find the probability that her total is 5.
	[4]

NOT TO SCALE

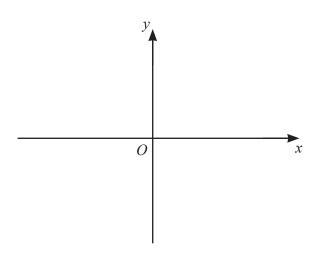

A, B and C are points on the circle, centre O. DE is a tangent to the circle at C. AC = 10 cm, AB = 9.5 cm and BC = 7.7 cm.


(a) Show that angle $ABC = 70.2^{\circ}$, correct to 1 decimal place.

[4]


(b) Find		
(i) angle AOC		
	Angle $AOC = \dots$	[1]
(ii) angle ACO		
	Angle $ACO = \dots$	[1]
(iii) angle ACD.		
	Angle ACD -	F11
(c) Calculate the radius, <i>OC</i> , of the circle.	Angle <i>ACD</i> =	[1]
	<i>OC</i> =	cm [3]
(d) Calculate the area of triangle ABC as a p	percentage of the area of the circle.	
		% [4]

9 (a) Sketch the following graphs.
On each sketch, indicate any intercepts with the axes.



(ii) $y = x^2 - 3x - 4$

(iii) $y = 6^x$

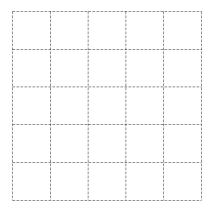
© UCLES 2022 0580/43/O/N/22

[2]

[2]

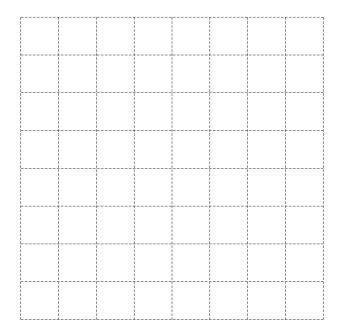
[4]

(b) (i)	Find the derivative, $\frac{dy}{dx}$, of $y = 5 + 8x - \frac{4}{3}x^3$.	
(ii)	Find the gradient of $y = 5 + 8x - \frac{4}{3}x^3$ at $x = -1$.	[2]
(iii)	A tangent is drawn to the graph of $y = 5 + 8x - \frac{4}{3}x^3$. The gradient of the tangent is -28 . Find the coordinates of the two possible points where this tangent meets the graph.	[2]

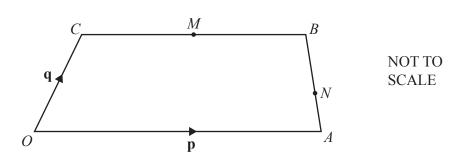

(.....)

(.....) [5]

$$\mathbf{a} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \qquad \mathbf{b} = \begin{pmatrix} -3 \\ 5 \end{pmatrix}$$


$$\mathbf{b} = \begin{pmatrix} -3 \\ 5 \end{pmatrix}$$

(i) On the grid, draw and label vector 2a.


[1]

(ii) On the grid, draw and label vector $(\mathbf{a} - \mathbf{b})$.

[2]

(b)

OABC is a trapezium with *OA* parallel to *CB*.

M is the midpoint of CB and N is the point on AB such that AN : NB = 1 : 2.

O is the origin, $\overrightarrow{OA} = \mathbf{p}$, $\overrightarrow{OC} = \mathbf{q}$ and $\overrightarrow{CB} = \frac{3}{4}\mathbf{p}$.

- (i) Find, in terms of **p** and/or **q**, in its simplest form
 - (a) \overrightarrow{OB}

$\overrightarrow{OB} =$		Г11
OD	•••••	L + J

(b) \overrightarrow{AB}

$$\overrightarrow{AB} = \dots [2]$$

(c) \overrightarrow{MN} .

$$\overrightarrow{MN} = \dots$$
 [3]

(ii) OA and MN are extended to meet at G.

Find the position vector of G in terms of \mathbf{p} .

.....[2]