

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/32

Paper 3 Pure Mathematics 3

October/November 2022

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

Solve the equation $2^{3x-1} = 5(3^{1-x})$. Give your answ	ver in the form $\frac{1}{\ln h}$ where	u and v are integers.
	$\mathrm{m} v$	[4]
		•••••
		•••••
		••••••
		•••••
		••••••
		•••••
		•••••

2

The polynomial $2x^3 - x^2 + a$, where a is a constant, is denoted by p(x). It is given that (2x + 3) is a

1)	Find the value of a .	[2]
		•••••
))	When a has this value, solve the inequality $p(x) < 0$.	[4]
		•••••

Tilla tile x-co	ordinate of th	is point, giv	ing your an	swer correct	to 3 significant	figures.	[
		••••••	•••••	••••••		••••••	
			•••••				
•••••							
							•••••
							• • • • • • • • • • • • • • • • • • • •
							••••••
							•••••
							•••••
							•••••
							•••••
			•••••				
••••••		•••••••	•••••				
			•••••				
		•••••••	•••••				

4 (a	Express $4\cos x - \sin x$ in the form $R\cos(x + \alpha)$, where $R > 0$ and $0^{\circ} < \alpha < 90^{\circ}$ value of R and give α correct to 2 decimal places.	State the exact [3]
(l	Hence solve the equation $4\cos 2x - \sin 2x = 3$ for $0^{\circ} < x < 180^{\circ}$.	[5]

5	(a)	Solve the equation $z^2 - 6iz - 12 = 0$, giving the answers in the form $x + iy$, where x and y are real and exact. [3]
	(1.)	

(b) On a sketch of an Argand diagram with origin O, show points A and B representing the roots of the equation in part (a). [1]

••••••		••••••	••••••	••••••	••••••	•••••••••
		•••••	•••••		•••••	
•••••	•••••	•••••	••••••	•••••	•••••	•••••
,						
			•••••		•••••	
					•••••	
Hence show	that the tria	ngle <i>OAB</i> is a	equilateral.			
Hence show	v that the trian	ngle OAB is ϵ	equilateral.			
Hence show	v that the trian	ngle <i>OAB</i> is e	equilateral.			
Hence show	v that the trian	ngle <i>OAB</i> is e	equilateral.			
Hence show	v that the trian	ngle <i>OAB</i> is e	equilateral.			

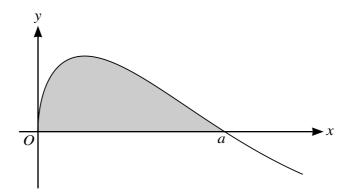
6	Relative to	the origin O ,	the points A ,	B and C have	position v	ectors given	by

n
$$O$$
, the points A , B and C have position vectors give.
$$\overrightarrow{OA} = \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix}, \quad \overrightarrow{OB} = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix} \quad \text{and} \quad \overrightarrow{OC} = \begin{pmatrix} 5 \\ 3 \\ -2 \end{pmatrix}.$$

Using a scalar product, find the cosine of angle <i>BAC</i> .	[4]

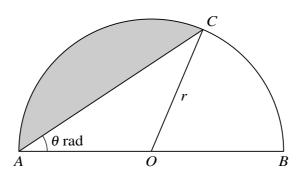
•••	•••••
•••	•••••
•••	
•••	 •••••
•••	•••••
•••	•••••
•••	
•••	 •••••
•••	•••••
•••	•••••
•••	•••••
•••	
•••	 •••••
•••	
•••	
•••	•••••

7	The variables	x and θ	9 satisfy	the differe	ntial equation
---	---------------	------------------	-----------	-------------	----------------


$$x\sin^2\theta \frac{\mathrm{d}x}{\mathrm{d}\theta} = \tan^2\theta - 2\cot\theta,$$

for $0 < \theta < \frac{1}{2}\pi$ and x > 0. It is given that x = 2 when $\theta = \frac{1}{4}\pi$.

(-)	$d_{(-1)}$	$2 \cot \theta$
(a)	Show that $\frac{d}{d\theta}(\cot^2\theta) =$	$-\frac{1}{\sin^2\theta}$


							$\operatorname{osec}^2 \theta$.)
•••••							•••••
•••••				•••••	•••••		•••••
•••••				•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••
•••••				•••••	•••••	•••••	•••••
••••••	,	•••••	• • • • • • • • • • • • • • • • • • • •		•••••	••••••	•••••
Solve the	umerenuai (equation at	ia ima me v	value of x wh	en $\theta = \frac{\pi}{6}$.		
				value of x wh	$en \theta = \frac{\pi}{6}.$		
		equation at		value of x wn	en $\theta = \frac{\pi}{6}$.		
		equation at		value of x wn	en $\theta = \frac{\pi}{6}$.		
			id find the v	value of x wn	en $\theta = \frac{\pi}{6}$.		
		equation at	id find the v	value of x wn	en $\theta = \frac{\pi}{6}$.		
		equation at	id find the v	value of x wn	en $\theta = \frac{\pi}{6}$.		
		equation at		value of x wn	en $\theta = \frac{\pi}{6}$.		
	umerential	equation at	id find the v	value of x wn	en $\theta = \frac{\pi}{6}$		
		equation at	id find the v	value of x wn	en $\theta = \frac{\pi}{6}$		
Solve the v				value of x wh			

The diagram shows part of the curve $y = \sin \sqrt{x}$. This part of the curve intersects the *x*-axis at the point where x = a.

(a)	State the exact value of a .	[1]
(b)	Using the substitution $u = \sqrt{x}$, find the exact area of the shaded region in the bounded by this part of the curve and the x-axis.	first quadrant [7]
		•••••

The diagram shows a semicircle with diameter AB, centre O and radius r. The shaded region is the minor segment on the chord AC and its area is one third of the area of the semicircle. The angle CAB is θ radians.

(a)	Show that $\theta = \frac{1}{3}(\pi - 1.5\sin 2\theta)$.	[4]
		•••••
		•••••
		•••••

	•••••	••••••	••••••	•••••	•••••	••••••	•••••
	••••••	••••••	••••••	•••••	••••••	••••••	•••••
•	••••••	••••••	••••••	•••••	••••••	••••••	•••••
	••••••	••••••••	•••••••••••	••••••		••••••	•••••
••••••	••••••	•••••••	•••••••••	••••••	••••••	••••••	••••••
			•••••	•••••			
						e θ correct	to 3 de
Use an itera	ntive formula e the result of	based on th	e equation	in part (a) t	to determine	e θ correct	to 3 de
Use an itera	utive formula	based on th	e equation	in part (a) t	to determine	e θ correct	to 3 de
Use an itera	ative formula e the result of	based on th	e equation on to 5 deci	in part (a) t mal places.	to determine		
Use an itera places. Give	utive formula	based on th	e equation on to 5 deci	in part (a) t mal places.	to determine		
Use an itera	ative formula e the result of	based on th	e equation on to 5 deci	in part (a) t mal places.	to determine		
Use an itera	ative formula e the result of	based on th	e equation on to 5 deci	in part (a) t mal places.	to determine		
Use an itera	ative formula e the result of	based on th	e equation on to 5 deci	in part (a) t mal places.	to determine		
Use an itera	ative formula e the result of	based on th	e equation on to 5 deci	in part (a) t mal places.	to determine		
Use an itera	ative formula e the result of	based on th	e equation on to 5 deci	in part (a) t mal places.	to determine		
Use an itera	ative formula e the result of	based on th	e equation on to 5 deci	in part (a) t mal places.	to determine		
Use an itera	ative formula e the result of	based on th	e equation on to 5 deci	in part (a) t mal places.	to determine		
Use an itera	ative formula e the result of	based on th	e equation on to 5 deci	in part (a) t mal places.	to determine		
Use an itera	ative formula e the result of	based on th	e equation on to 5 deci	in part (a) t mal places.	to determine		
Use an itera	ative formula e the result of	based on th	e equation on to 5 deci	in part (a) t mal places.	to determine		

10	Let $f(x) =$	$4 - x + x^2$	
10	Let $I(x) =$	$(1+x)(2+x^2)$.	

(a)	Express $f(x)$ in partial fractions.	[5]

Find the exact value of $\int_0^4 f(x) dx$. Give your answ	
	 •••••
	 ••••••
	 •••••
	 •••••
	 •••••
	 •••••
	 •••••
	 •••••
	 •••••
	 •••••
	 •••••
	 •••••