

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/63

Paper 6 Probability & Statistics 2

October/November 2022

1 hour 15 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

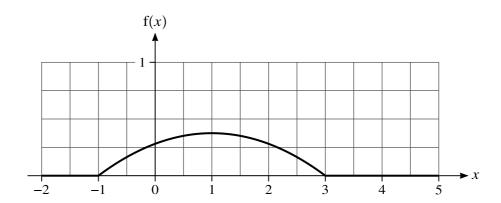
- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 50.
- The number of marks for each question or part question is shown in brackets [].

The he	ıghts, in	metres,	of a rand	dom sam	ple of 1	0 mature	trees of	a certai	n variety	are give	n below.
	5.9	6.5	6.7	5.9	6.9	6.0	6.4	6.2	5.8	5.8	
Find un variety		estimates	of the p	populatio	n mean	and vari	ance of t	he heigh	nts of all	mature tr	rees of this
	•••••	••••••	•••••	••••••	••••••	••••••	•••••	•••••	••••••	•••••	
										•••••	
	•••••		•••••	••••••	•••••		•••••		••••••	•••••	
•••••	•••••		•••••		•••••		•••••		••••••		
•••••	•••••		•••••						•••••		
•••••	•••••	••••••	•••••		•••••		•••••	••••••	••••••		
•••••	•••••		•••••	••••••	••••••	••••••	•••••		••••••	•••••	
•••••	•••••		•••••	••••••	••••••	••••••	•••••		••••••	•••••	••••••
••••••	•••••	••••••	••••••	••••••	••••••	••••••	•••••	••••••	••••••		
•••••	•••••	••••••	•••••	••••••	••••••	•••••	•••••		••••••	•••••	
••••••	•••••	••••••••	•••••	••••••							
•••••	•••••		•••••	••••••	•••••	••••••	•••••		••••••	•••••	
•••••	•••••	••••••	••••••	••••••	••••••	••••••	•••••	••••••	••••••	•••••	•••••••
•••••	•••••	••••••	•••••	••••••	••••••	••••••	•••••	••••••	••••••	•••••	•••••••
••••••	•••••	•••••••	•••••	••••••	••••••	••••••	•••••	•••••••	••••••	••••••	••••••
•••••	••••••		••••••	••••••	••••••	•••••	••••••	•	••••••	•••••	
	••••					••••				•••••	

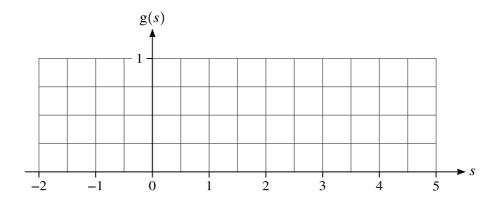
spin		
a)	Use a binomial distribution to carry out the test at the 5% significance level.	[5]
		•••••
		•••••
		•••••
		•••••
an	jay also spins the spinner 40 times. He finds that it lands on red r times.	
	jay also spins the spinner 40 times. He finds that it lands on red r times. Use a binomial distribution to find the largest value of r that lies in the rejection region for test at the 5% significance level.	r the
	Use a binomial distribution to find the largest value of r that lies in the rejection region for	
	Use a binomial distribution to find the largest value of r that lies in the rejection region for	
	Use a binomial distribution to find the largest value of r that lies in the rejection region for	
	Use a binomial distribution to find the largest value of r that lies in the rejection region for	
	Use a binomial distribution to find the largest value of r that lies in the rejection region for	
	Use a binomial distribution to find the largest value of r that lies in the rejection region for	
	Use a binomial distribution to find the largest value of r that lies in the rejection region for	
	Use a binomial distribution to find the largest value of r that lies in the rejection region for	
	Use a binomial distribution to find the largest value of r that lies in the rejection region for	
	Use a binomial distribution to find the largest value of r that lies in the rejection region for	
	Use a binomial distribution to find the largest value of r that lies in the rejection region for	


© UCLES 2022 9709/63/O/N/22

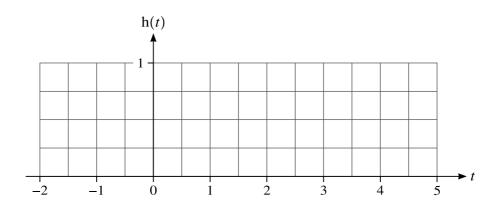
	Find the probability that at least 3 drops fall during a randomly chosen 30-second period. [3
)	Use a suitable approximating distribution to find the probability that at least 650 drops fall during a randomly chosen 2-hour period. [4

	th month a company sells $X \log$ of brown sugar and $Y \log$ of white sugar, where X and Y have the ependent distributions $N(2500, 120^2)$ and $N(3700, 130^2)$ respectively.
(a)	Find the mean and standard deviation of the total amount of sugar that the company sells in 3 randomly chosen months.
	company makes a profit of \$1.50 per kilogram of brown sugar sold and makes a loss of \$0.20 per ogram of white sugar sold.
(b)	Find the probability that, in a randomly chosen month, the total profit is less than \$3000. [5]

© UCLES 2022 9709/63/O/N/22


1)	The masses of size A stones have standard deviation 6 grams. The mean mass of a random sar of 200 size A stones is 45 grams.	nple
	Find a 95% confidence interval for the population mean mass of size A stones.	[3
		••••
		•••••
		•••••
		•••••
)	The masses of size B stones have standard deviation 11 grams. Using a random sample of size	200
,	an $\alpha\%$ confidence interval for the population mean mass is found to have width 4 grams.	200
•)		
	an $\alpha\%$ confidence interval for the population mean mass is found to have width 4 grams.	
•)	an $\alpha\%$ confidence interval for the population mean mass is found to have width 4 grams.	
-)	an $\alpha\%$ confidence interval for the population mean mass is found to have width 4 grams.	[4]
	an $\alpha\%$ confidence interval for the population mean mass is found to have width 4 grams.	
	an $\alpha\%$ confidence interval for the population mean mass is found to have width 4 grams.	
	an $\alpha\%$ confidence interval for the population mean mass is found to have width 4 grams.	[4]
	an $\alpha\%$ confidence interval for the population mean mass is found to have width 4 grams. Find α .	[4]
	an $\alpha\%$ confidence interval for the population mean mass is found to have width 4 grams. Find α .	[4]
	an $\alpha\%$ confidence interval for the population mean mass is found to have width 4 grams. Find α .	[4

The diagram shows the graph of the probability density function of a random variable X that takes values between -1 and 3 only. It is given that the graph is symmetrical about the line x = 1. Between x = -1 and x = 3 the graph is a quadratic curve.


The random variable *S* is such that $E(S) = 2 \times E(X)$ and Var(S) = Var(X).

(a) On the grid below, sketch a quadratic graph for the probability density function of S. [1]

The random variable *T* is such that E(T) = E(X) and $Var(T) = \frac{1}{4}Var(X)$.

(b) On the grid below, sketch a quadratic graph for the probability density function of T. [2]

© UCLES 2022 9709/63/O/N/22

It is now given that

$$f(x) = \begin{cases} \frac{3}{32}(3 + 2x - x^2) & -1 \le x \le 3, \\ 0 & \text{otherwise.} \end{cases}$$

•	Given that $P(1 - a < X < 1 + a) = 0.5$, show that $a^3 - 12a + 8 = 0$.	
I	Hence verify that $0.69 < a < 0.70$.	

She is 31	.8 minutes. You should assume that the standard deviation is unchanged.
(a)	Carry out a hypothesis test, at the 8% significance level, of whether Laxmi's mean journey time has decreased. [5]

Later Laxmi carries out a similar test with the same hypotheses, at the 8% significance level, using another random sample of size 50.

• •	
• •	
• •	
• •	
••	
••	
• •	
••	
••	
••	