Cambridge International AS & A Level | CANDIDATE
NAME | | | | | | |-------------------|--|--|---------------------|--|--| | CENTRE
NUMBER | | | CANDIDATE
NUMBER | | | MATHEMATICS 9709/31 Paper 3 Pure Mathematics 3 May/June 2023 1 hour 50 minutes You must answer on the question paper. You will need: List of formulae (MF19) ## **INSTRUCTIONS** - Answer all questions. - Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs. - Write your name, centre number and candidate number in the boxes at the top of the page. - Write your answer to each question in the space provided. - Do **not** use an erasable pen or correction fluid. - Do not write on any bar codes. - If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown. - You should use a calculator where appropriate. - You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator. - Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question. ## **INFORMATION** - The total mark for this paper is 75. - The number of marks for each question or part question is shown in brackets []. This document has 20 pages. Any blank pages are indicated. | 1 Solve the equation | |----------------------| |----------------------| | - 2r | $-4e^{-2x}$ | | _ | |-----------|------------------|---|----| | $3e^{2x}$ | _ /10 21 | _ | 4 | | Ju | — T C | _ | J. | | Give the answer correct to 3 decimal places. | [3] | |--|-------------| ••••••••••• | •••••••••• | •••••• | | | | [1] | 2 | (a) | Sketch | the | graph | of $v =$ | 2x + | 31. | |---|-----|--------|-----|-------|----------|------|-----| | (b) | Solve the inequality $3x + 8 > 2x + 3 $. | [3] | |------------|--|-----| ••••• | |-------------| | | | | | | | ••••• | |
 | | | | ••••• | |
 | | | | ••••• | |
 | | | |
 | | | | ••••• | | ••••• | | | |
 | | | | | |
 | |
 | | | |
 | | | | ••••••••••• | |
 | |
 | | | $\cos^2\theta + 2\sin\theta\cos\theta - 3\sin^2\theta = 0.$ | [2] | |------------|--|-----| (b) | Hence solve the equation $\sin 2\theta + \cos 2\theta = 2\sin^2 \theta$ for $0^\circ < \theta < 180^\circ$. | [4] | | () | 1 | 5 | S | Show that $\frac{dy}{dx} = \frac{2xy}{2ay - x^2}$. | | |---|---|-------| | | | | | | | | | | | | | • | | | | | | | | | | | | | | | | • | | | | | | | | | | | | • | | ••••• | | | | ••••• | | | | | | | | | | • | | | | | | | | | | | | • | | | | | | | | | | | | | | | | • | | | | | | | | | | | | • | | ••••• | | | | | | | | | | | | | | • | | | | | | | | | | | | ••••• | •••••• | • | ••••• | •••••• | ••••• | •••••• | ••••• | •••••• | •••••• | ••••• | •••••• | |--------|--------|---|--------|---|-------|--------|-------|---|---|---|--------| •••••• | •••••• | • | ••••• | •••••• | ••••• | •••••• | ••••• | ••••• | | ••••• | •••••• | ••••• | | | ••••• | | | | | | | • | ••••• | | | ••••• | | | | •••• | ••••• | •••• | •••• | | •••• | •••• | | | | | ., | | | | | | | | | | | | | ••••• | | | | | ••••• | | ••••• | | | | | | | | | | | | | | | | ••••• | •••••• | • | ••••• | •••••• | ••••• | •••••• | ••••• | •••••• | •••••• | ••••• | •••••• | ••••• | •••••• | • | ••••• | | | | ••••• | ••••• | | ••••• | ••••• | ••••• | | | | | | | ••••• | ••••• | | | | | | | | | | | | | | | | | • | | | | | ••••• | | | • | | | | | | ••••• | | | | | ••••• | | ••••• | | | | | | | | | | | | | | | | •••••• | , | • | ••••• | •••••• | | ••••• | ••••• | ••••• | •••••• | • | •••••• | ••••• | •••••• | • | •••••• | •••••• | ••••• | •••••• | ••••• | ••••• | •••••• | ••••• | ••••• | ••••• | | | ••••• | | | ••••• | | ••••• | | ••••• | ••••• | | | | | | | | | | | | •••• | | | | | | | | | | | | | | | | | | | ••••• | | | | | | | | ••••• | | | | | | | | | | | | | | | | •••••• | • | ••••• | • | ••••• | ••••• | ••••• | • | • | • | ••••• | **6** Relative to the origin O, the points A, B and C have position vectors given by $$\overrightarrow{OA} = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}, \qquad \overrightarrow{OB} = \begin{pmatrix} 4 \\ 3 \\ 2 \end{pmatrix} \quad \text{and} \quad \overrightarrow{OC} = \begin{pmatrix} 3 \\ -2 \\ -4 \end{pmatrix}.$$ The quadrilateral *ABCD* is a parallelogram. | a) | Find the position vector of D . [3 | |----|--------------------------------------| © UCLES 2023 9709/31/M/J/23 | (b) | The angle between BA and BC is θ . | |------------|--| | | Find the exact value of $\cos \theta$. [3] | (c) | Hence find the area of $ABCD$, giving your answer in the form $p\sqrt{q}$, where p and q are integers. [4] | 7 | The | variables | x and | y satisfy | the | differential | equation | |--|---|-----|-----------|-------|-----------|-----|--------------|----------| |--|---|-----|-----------|-------|-----------|-----|--------------|----------| derential equation $$\cos 2x \frac{dy}{dx} = \frac{4 \tan 2x}{\sin^2 3y},$$ where $0 \le x < \frac{1}{4}\pi$. It is given that y = 0 when $x = \frac{1}{6}\pi$. | Solve the differential equation to obtain the value of x when $y = \frac{1}{6}\pi$. Give your answer correct 3 decimal places. | to
[8] | |---|-----------| | | •••• | | | | © UCLES 2023 9709/31/M/J/23 |
 | |------| |
 | |
 | |
 | |
 | | | | | |
 | | | |
 | | | |
 | |
 | | | | | |
 | | | | | | | |
 | |
 | | | | | |
 | |
 | |
 | | | | 8 | Let $f(x) = \frac{3 - 3x^2}{(2x + 1)(x + 2)^2}$. | |---|---| | | (a) Express $f(r)$ in partial | | |
 | | | |-------|-----------|-------|-------------| | | | | | | |
••••• | ••••• | •••••• | | |
 | | | | |
 | | | | | | | | | ••••• |
••••• | ••••• | ••••••••••• | | |
 | | | | |
 | | | | |
 | | | | | | | | | |
 | ••••• | | | |
 | | | | |
 | | | | | | | | | | | | | | |
 | | | | |
 | | | | |
 | | | | | | | | | | | | | | |
 | | | | |
 | | | | |
 | | | | | | | | | |
••••• | | •••••• | | |
 | | | | and c are in | tegers. | •0 | your answe | | | |----------------|---------|----|------------|-----------|---------------| | | | |
••••• |
 | | | | •••••• | |
•••••• |
••••• | | | | ••••• | |
 |
 | | | ••••• | ••••• | |
 |
 | | | ••••• | | |
••••• |
 | | | ••••• | | |
•••••• |
••••• | | | | | |
 |
 | | | | | |
 |
 | • • • • • • • | | ••••• | | |
 |
 | ••••• | | | ••••• | |
••••• |
 | | | ••••• | | |
•••••• |
••••• | • • • • • • • | | | | |
 |
 | | | | | |
 |
 | | | | | |
 |
 | | | | | |
 |
 | | | | | |
 |
 | | | | | |
 |
 | | | | | |
 |
 | | | | | |
 |
 | | | | •••••• | |
••••• |
••••• | | | | | |
 |
 | | | | ••••• | |
 |
 | | | | | |
 |
 | | | S | Show that $a = \frac{1}{2} \ln(4a + 2)$. | | |----|---|-------| | •• | | | | | | ••••• | | | | | | | | | | | | | | | | ••••• | | | | ••••• | | | | ••••• | | | | | | | | ••••• | | | | ••••• | | | | | | | | | | •• | | | | | | ••••• | | | | ••••• | | •• | | | | •• | | | | •• | | | | | | ••••• | | •• | | ••••• | | •• | | ••••• | 9 | ••••• | |-------| | | | | | | | | | | | ••••• | | | | | | | | ••••• | | ••••• | | | | | | | | | | ••••• | | | | | | ••••• | | | | | | | | ••••• | | | | ••••• | | | | | | | | | | | | 10 | The | polynomial $x^3 + 5x^2 + 31x + 75$ is denoted by $p(x)$. | | | | | | |----|------------|---|-------|--|--|--|--| | | (a) | Show that $(x + 3)$ is a factor of $p(x)$. | (b) | Show that $z = -1 + 2\sqrt{6}i$ is a root of $p(z) = 0$. | [3] | ••••• | © UCLES 2023 9709/31/M/J/23 | c) l | Hence find the complex numbers z which are roots of $p(z^2) = 0$. | [7] | |--------------|--|--------| | • | | | | | | | | • | | | | • | | | | | | •••••• | | | | •••••• | | • | | | | • | | | | • | | | | • | | | | | | | | | | | | • | | | | • | | | | • | | | | • | | | | • | | | | • | | | | • | | •••••• | | • | | •••••• | | • | | | | • | | | | • | | •••••• | | • | | •••••• | ## **Additional Page** | If you use the following lined page to complete the answer(s) to any question(s), the question number(s must be clearly shown. | ;) | |--|----| | | •• | | | | | | •• | | | | | | | | | | | | •• | | | | | | | | | •• | | | •• | | | | | | | | | •• | | | •• | | | | | | •• | | | •• | | | | | | | | | •• | | | | | | | | | | | | •• | | | | | | | | | •• | | | | | | | | | | | | •• | | | |