

Cambridge IGCSE[™]

CANDIDATE NAME							
CENTRE NUMBER				CANDIDATE NUMBER			

203927787

MATHEMATICS 0580/12

Paper 1 Non-calculator (Core)

May/June 2025

1 hour 30 minutes

You must answer on the question paper.

You will need: Geometrical instruments

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- Calculators must not be used in this paper.
- You may use tracing paper.
- You must show all necessary working clearly.

INFORMATION

- The total mark for this paper is 80.
- The number of marks for each question or part question is shown in brackets [].

This document has 16 pages. Any blank pages are indicated.

List of formulas

2

Area, A, of triangle, base b, height h.

$$A = \frac{1}{2}bh$$

Area, A, of circle of radius r.

$$A = \pi r^2$$

Circumference, C, of circle of radius r.

$$C = 2\pi r$$

Curved surface area, A, of cylinder of radius r, height h.

$$A = 2\pi rh$$

Curved surface area, A, of cone of radius r, sloping edge l.

$$A = \pi r l$$

Surface area, A, of sphere of radius r.

$$A = 4\pi r^2$$

Volume, V, of prism, cross-sectional area A, length l.

$$V = Al$$

Volume, V, of pyramid, base area A, height h.

$$V = \frac{1}{3}Ah$$

Volume, V, of cylinder of radius r, height h.

$$V = \pi r^2 h$$

Volume, V, of cone of radius r, height h.

$$V = \frac{1}{3}\pi r^2 h$$

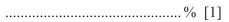
Volume, V, of sphere of radius r.

$$V = \frac{4}{3}\pi r^3$$

Calculators must **not** be used in this paper.

3

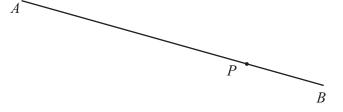
1 Write the number sixteen thousand and sixty-two in figures.

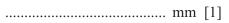

 [1]
 L ^ J

2 Write three-quarters as

(a) a decimal

(b) a percentage.

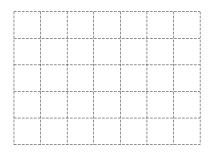

- 3 Write down the value of
 - (a) $\sqrt{36}$


(b) 10^3 .

4 The diagram shows a line AB and a point P.

(a) Measure the length of line AB in millimetres.

(b) Draw a line through point *P* that is perpendicular to line *AB*.


[1]

5 Complete this statement.

10 weeks is .	days.	[1

6

Shade
$$\frac{2}{5}$$
 of the rectangle. [1]

7 (a) Find the value of the reciprocal of $\frac{1}{3}$.

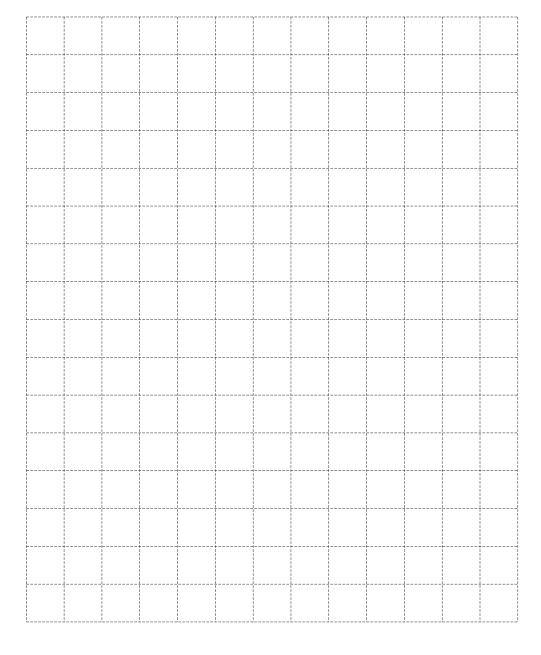
(b) Write 2^{-3} as a fraction.

8 Put one pair of brackets into each calculation to make it correct.

(a)
$$-12+4 \div 2-3 = -16$$

(b)
$$-3-4+5-7=-5$$

9 Write these fractions in order, starting with the smallest.


$$\frac{5}{8}$$
 $\frac{11}{12}$ $\frac{2}{3}$ $\frac{3}{4}$ $\frac{13}{24}$

$$\ldots$$
 < \ldots < \ldots < \ldots [2] $smallest$

10 A cuboid has length 5 cm, width 2 cm and height 3 cm.

(a) Draw a net of the cuboid on the $1 \, \text{cm}^2$ grid.

5

(b) Work out the volume of the cuboid. Give the units of your answer.

.....[2

[3]

2 2 3 4

7

6

For these six numbers

11

.....[1]

12 Tim has a method for multiplying a number by 99. He shows his method for 53×99 .

$$53 \times 99$$

= $53 \times 100 - 53$
= $5300 - 53$
= 5247

Work out 85×99 using Tim's method.

(a) A quadrilateral has the geometrical properties

- 4 equal length sides
- 2 lines of symmetry
- rotational symmetry of order 2.

Write down the mathematical name of this quadrilateral.

(b) Write down two geometrical properties of a rectangle.

	 [1]
Write down two geometrical properties of a rectangle.	
1	

(c)

7

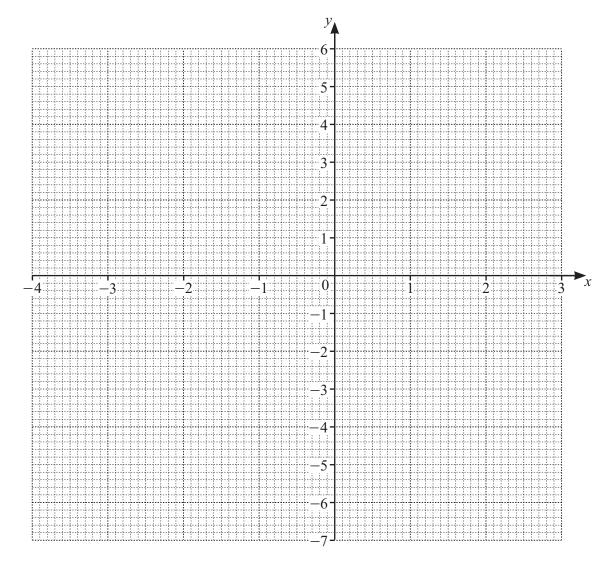
The parallel sides of a trapezium have lengths 6 cm and 4 cm. The area of the trapezium is 15 cm².

On the 1 cm² grid, draw a trapezium with these lengths and area.

[3]

[2]

[3]


[4]

14 (a) Complete the table of values for y = (x+3)(x-2).

x	-4	-3	-2	-1	0	1	2	3
y	6		-4			-4		

(b) On the grid, draw the graph of y = (x+3)(x-2) for $-4 \le x \le 3$.

DO NOT WRITE IN THIS MARGIN

(c) Write down the coordinates of the lowest point of the graph.

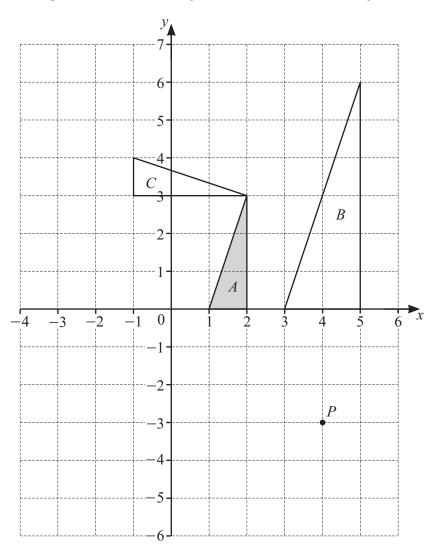
9

()	Γ1 ⁻
1	 ,	 ,	LŤ.

(d) Write down the equation of the line of symmetry of the graph.

(e) Use your graph to solve the equation (x+3)(x-2) = 3.

$$x =$$
 or $x =$ [2]


15 Beth thinks of a positive number, *n*. She squares *n* then subtracts 55. The answer is 9.

Work out the value of n.

$$n = \dots$$
 [2]

16 The diagram shows a point P and three triangles, A, B and C, on a 1 cm² grid.

10

(a) Find the area of triangle B.

	cm^2	[1]
--	--------	-----

(b) (i) Write down the coordinates of point P.

(ii) Work out the coordinates of point P after a translation by the vector $\begin{pmatrix} -20\\12 \end{pmatrix}$.

(.....) [1]

(i)

(c) Draw the image of triangle A after a reflection in the line y = -1.

[2]

(d) Describe fully the single transformation that maps

triangle A onto triangle B	

(ii) triangle A onto triangle C.

11

	[3]

for the value of

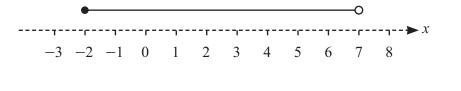
7 By writing each number in the calculation correct to 1 significant figure, find an estimate

$$\frac{17.8 + 10.3}{5.5} \ .$$

12

.....[2]

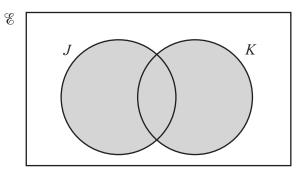
18 Find the highest common factor (HCF) of 66 and 110.


.....[2]

19 (a) *P* is a prime number.

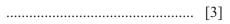
Write down the value of *P* that satisfies the inequality 13 < P < 19.

$$P = \dots [1]$$


(b) Write down the inequality represented on the number line.

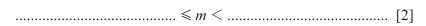
.....[2]

20


13

Use set notation to describe the shaded region.

|--|


21 Work out $2\frac{7}{9} \times 1\frac{1}{5}$.

Give your answer as a mixed number in its simplest form.

22 The mass, $m \, \text{kg}$, of a stone is 3.2 kg, correct to the nearest 100 g.

Complete this statement about the value of m.

23 (a) Factorise.

$$9x - 6xy$$

	[[2]
--	---	-----

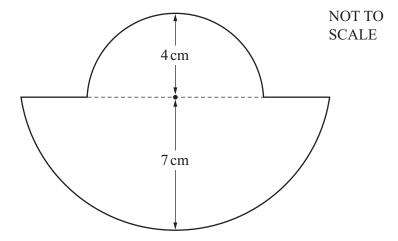
(b) Expand and simplify.

$$(2x+3)(x-4)$$

14

24 Solve the simultaneous equations.

$$5x + 2y = 3$$


$$3x + 4y = 27$$

$$x = \dots$$

$$y = \dots$$
[3

25 The diagram shows a shape made from two different semicircles, with the same centre.

15

The radius of the large semicircle is 7 cm. The radius of the small semicircle is 4 cm.

Work out the perimeter of the shape. Give your answer in terms of π .

 cm	[3]