

Cambridge IGCSE[™]

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 0580/22

Paper 2 Non-calculator (Extended)

May/June 2025

2 hours

You must answer on the question paper.

You will need: Geometrical instruments

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- Calculators must not be used in this paper.
- You may use tracing paper.
- You must show all necessary working clearly.

INFORMATION

- The total mark for this paper is 100.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Any blank pages are indicated.

List of formulas

2

Area, A, of triangle, base b, height h.

$$A = \frac{1}{2}bh$$

Area, A, of circle of radius r.

$$A = \pi r^2$$

Circumference, C, of circle of radius r.

$$C = 2\pi r$$

Curved surface area, A, of cylinder of radius r, height h.

$$A = 2\pi rh$$

Curved surface area, A, of cone of radius r, sloping edge l.

$$A = \pi r l$$

Surface area, A, of sphere of radius r.

$$A = 4\pi r^2$$

Volume, V, of prism, cross-sectional area A, length l.

$$V = Al$$

Volume, V, of pyramid, base area A, height h.

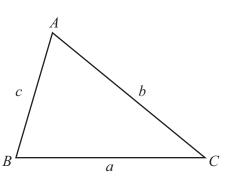
$$V = \frac{1}{3}Ah$$

Volume, V, of cylinder of radius r, height h.

$$V = \pi r^2 h$$

Volume,
$$V$$
, of cone of radius r , height h .

$$V = \frac{1}{3}\pi r^2 h$$


Volume, V, of sphere of radius r.

$$V = \frac{4}{3}\pi r^3$$

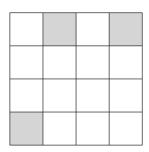
$$ax^2 + bx + c = 0$$
, where $a \neq 0$,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

For the triangle shown,

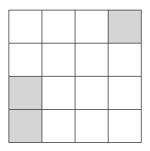
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$


$$Area = \frac{1}{2}ab\sin C$$

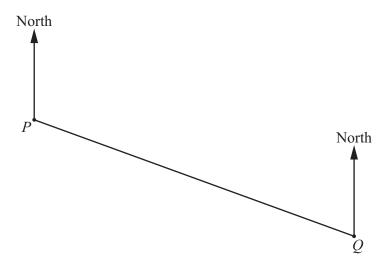
Calculators must **not** be used in this paper.

3


1 (a)

Shade **one** more small square so that the diagram has one line of symmetry.

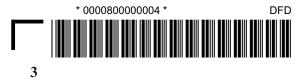
[1]


(b)

Shade **one** more small square so that the diagram has rotational symmetry of order 2. [1]

2 The scale drawing shows the positions of two villages, P and Q.

The scale is 1 cm represents 0.5 km.


(a) Find the actual distance between village P and village Q.

km	[21
KIII	

(b) Measure the bearing of village Q from village P.

······ L±

The diagram shows two straight lines intersecting two parallel lines.

Find the value of x and the value of y.

[3]

4

2

3

4

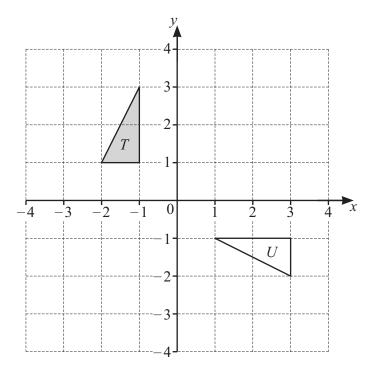
5

6

7

Samira picks one of these cards at random and replaces it.

(a) Find the probability that she picks an odd number.


.....[1]

(b) Samira repeats this 35 times.

Calculate the number of times Samira is expected to pick an odd number.

.....[1]

(a)	Translate triangle <i>T</i> by the vector	$\begin{pmatrix} 0 \\ -2 \end{pmatrix}$		[1]
-----	---	---	--	-----

(b) Describe fully the **single** transformation that maps triangle T onto triangle U.

6 Solve.

(a)
$$8x + 7 = 39$$

$$x = \dots$$
 [2]

(b)
$$2(5y-1) = 24$$

$$y =$$
 [3]

7 These are the first 4 terms of a sequence.

11 8 5 2

(a) Find the next term of this sequence.

.....[1

(b) Find the *n*th term of this sequence.

......[2]

8 Find the highest common factor (HCF) of 36 and 54.

.....[2]

DO NOT WRITE IN THIS MARGIN

9 *A* is the point (3, -1).

$$\overrightarrow{AB} = \begin{pmatrix} 2 \\ -4 \end{pmatrix}$$

(a)
$$\overrightarrow{AC} = 2\overrightarrow{AB}$$

Find the coordinates of the point C.

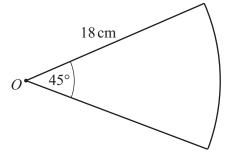
7

1				1	$\Gamma 21$
l	• • • • • • • • • • • • • • • • • • • •	,	• • • • • • • • • • • • • • • • • • • •	,	

(b) The length of AB is $k\sqrt{5}$.

Find the value of k.

$$k = \dots$$
 [2]

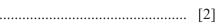

(c) P is a point on AB.

$$AP : PB = 1 : 3$$

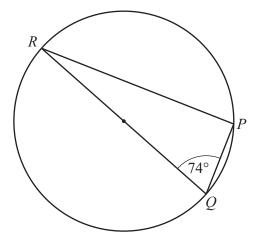
Find the position vector of P.

8

NOT TO SCALE


The diagram shows a sector of a circle, centre O. The length of the arc is $n\pi$ cm .

Find the value of n.


$$n = \dots$$
 [2]

11 (a) Write 0.007 08 in standard form.

(b) Work out $(3.8 \times 10^{22}) + (3.8 \times 10^{23})$. Give your answer in standard form.

NOT TO SCALE

P, Q and R lie on a circle. QR is a diameter.

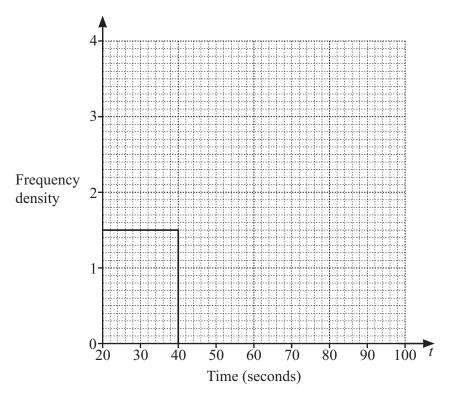
Find angle *PRQ*. Give geometrical reasons for your answer.

Angle $PRQ = \dots$ because	
	[2]

9

13 (a) 100 students solve a puzzle.

The table shows information about the time taken by each student to solve the puzzle.


10

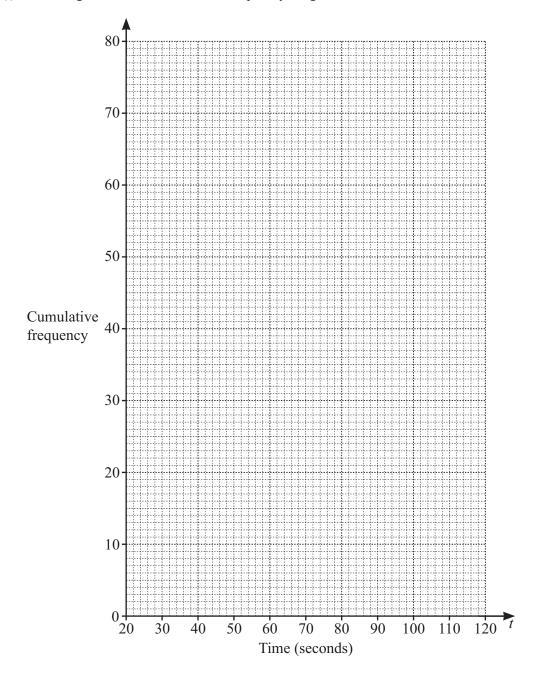
Time (t seconds)	$20 < t \le 40$	$40 < t \leqslant 60$	$60 < t \le 100$
Frequency	30	40	30

(i) Work out an estimate of the mean.

.....s [4]

(ii) Complete the histogram to show the information in the table.

[2]


(b) 80 adults solve the same puzzle as the students.

The cumulative frequency table shows information about the time taken by each adult to solve the puzzle.

Time (t seconds)	<i>t</i> ≤ 20	<i>t</i> ≤ 40	<i>t</i> ≤ 60	<i>t</i> ≤ 80	<i>t</i> ≤ 100	<i>t</i> ≤ 120
Cumulative frequency	0	12	36	60	74	80

11

(i) On the grid, draw a cumulative frequency diagram.

(ii) Use your cumulative frequency diagram to find an estimate for

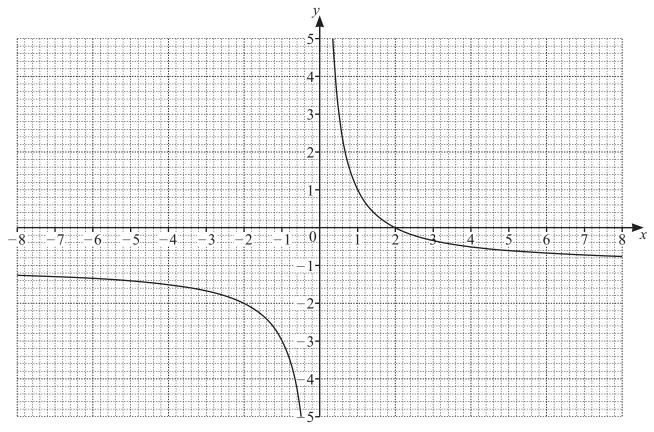
(a) the median

..... s [1]

(b) the lower quartile.

.....s [1]

[3]


[Turn over

14 Write $0.2\dot{5}$ as a fraction.

.....[2]

12

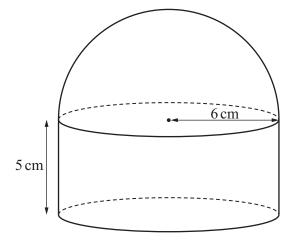
13

The diagram shows the graph of $y = \frac{2}{x} - 1$.

(a) Write down the coordinates of the point where the graph crosses the x-axis.

(.....) [1]

(b) Write down the equation of each asymptote.


.....

[2]

(c) By drawing a suitable straight line on the grid, solve $\frac{2}{x} - x - 1 = 0$.

$$x = \dots$$
 or $x = \dots$ [3]

14

NOT TO SCALE

The diagram shows a solid made by joining a hemisphere to a cylinder.

The radius of both the hemisphere and the cylinder is 6 cm.

The height of the cylinder is 5 cm.

Find the **total** surface area of the solid.

Give your answer in terms of π .

	cm^2	[4]
--	--------	-----

- 17 Find the value of
 - (a) $125^{\frac{2}{3}}$

.....[2]

(b) $4^{-\frac{5}{2}}$.

.....[2]

18 (a) $\frac{9}{\sqrt{3}}$

Rationalise the denominator. Give your answer in its simplest form.

	Г 2 1
• • • • • • • • • • • • • • • • • • • •	L~]

(b)
$$(5-\sqrt{2})(1+3\sqrt{2}) = c+k\sqrt{2}$$

Find the value of c and the value of k.

$$c = \dots$$

$$k = \dots$$
[2]

- 19 Write as a single fraction in its simplest form.
 - (a) $\frac{5a}{6} \times \frac{3b}{a}$

(b)
$$\frac{p}{2} + \frac{3t}{4}$$

15

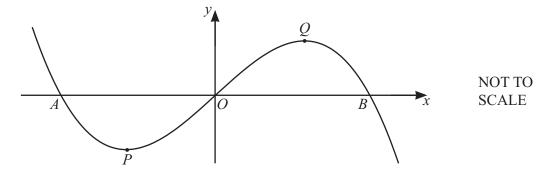
(c)
$$\frac{2}{x-2} - \frac{3}{x+1}$$

20 $y \propto \frac{1}{\sqrt{x}}$

(a) When
$$x = 9$$
, $y = 2$.

Find the value of y when x = 36.

$$y = \dots [3]$$


(b) When x is increased by a factor of 4, the value of y changes by a factor of p.

16

Find the value of p.

$$p = \dots [1]$$

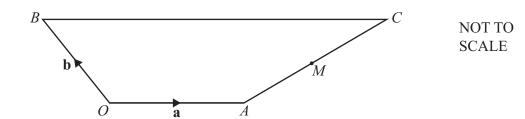
17

The diagram shows the graph of $y = 3x - x^3$. The graph crosses the x-axis at A, at O and at B. The turning points of the graph are at P and at Q.

(a) Find the *x*-coordinate of *A* and the *x*-coordinate of *B*. Give your answers as exact values.

(b) (i) Differentiate $3x-x^3$.

(ii) Find the coordinates of P and Q.



22 (a) Write down the exact value of $\tan 60^{\circ}$.

(b)	Solve	$2\sin x -$	1 = 0	for $0^{\circ} \le x \le 360^{\circ}$.

$$x = \dots$$
 or $x = \dots$ [3]

23

18

In the diagram, OA is parallel to BC.

BC = 3OA

M is the midpoint of AC.

The position vector of A is **a** and the position vector of B is **b**.

Find the position vector of *M*.

Give your answer in terms of **a** and **b**, in its simplest form.

24 The line y = 7x + 3 intersects the curve $y = x^2 + 5x - 12$ at the points A and B.

19

Find the coordinates of A and B.

A (, ,)
B(,)
	[5]