

Cambridge IGCSE[™]

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

876077341

MATHEMATICS 0580/33

Paper 3 Calculator (Core)

May/June 2025

1 hour 30 minutes

You must answer on the question paper.

You will need: Geometrical instruments

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You should use a scientific calculator where appropriate.
- You may use tracing paper.
- You must show all necessary working clearly.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.
- For π , use either your calculator value or 3.142.

INFORMATION

- The total mark for this paper is 80.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Any blank pages are indicated.

List of formulas

2

Area, A, of triangle, base b, height h.

$$A = \frac{1}{2}bh$$

Area, A, of circle of radius r.

$$A = \pi r^2$$

Circumference, C, of circle of radius r.

$$C = 2\pi r$$

Curved surface area, A, of cylinder of radius r, height h.

$$A = 2\pi rh$$

Curved surface area, A, of cone of radius r, sloping edge l.

$$A = \pi r l$$

Surface area, A, of sphere of radius r.

$$A = 4\pi r^2$$

Volume, V, of prism, cross-sectional area A, length l.

$$V = Al$$

Volume, V, of pyramid, base area A, height h.

$$V = \frac{1}{3}Ah$$

Volume, V, of cylinder of radius r, height h.

$$V = \pi r^2 h$$

Volume, V, of cone of radius r, height h.

$$V = \frac{1}{3}\pi r^2 h$$

Volume, V, of sphere of radius r.

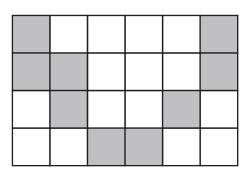
$$V = \frac{4}{3}\pi r^3$$

2 6 16 18 24 26 27 33

From this list, write down the number that is

(a) a multiple of 12

.....[1]


(b) a square number

.....[1]

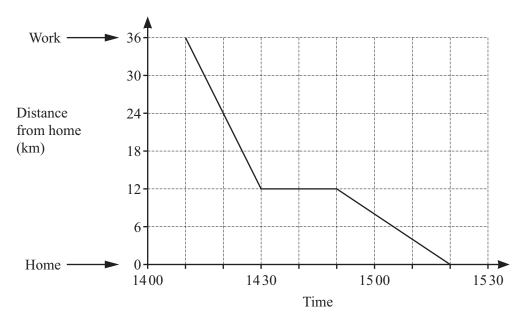
(c) a cube number.

.....[1]

2

Shade one square so that the diagram has 1 line of symmetry.

[1]


3 Put **one** pair of brackets into this calculation to make it correct.

$$80 \div 8 + 2 \times 3 = 24$$

[1]

* 0000800000004 * DFI

4 Tim drives home from work.
The travel graph shows his journey.

(a) Write down the time Tim leaves work.

.....[1]

- **(b)** Tim stops on the way home.
 - (i) Find how far Tim travels before he stops.

.....km [1]

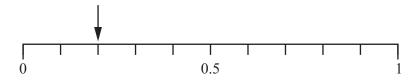
(ii) Find how long Tim stops for.

..... min [1]

5 Calculate.

$$\frac{2.8^5 - 0.3^2}{\sqrt{5}}$$

Give your answer correct to 2 decimal places.


.....[2]

6 In a bag of counters, 6 of the counters are blue.

The arrow (\downarrow) on the probability scale shows the probability of picking a blue counter at random.

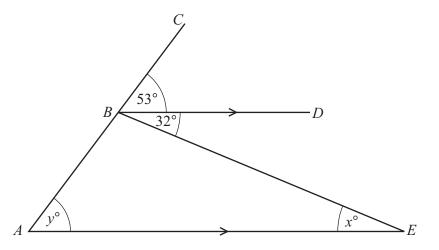
5

Work out the total number of counters in the bag.

.....[1]

7 The local time in Japan is $3\frac{1}{2}$ hours ahead of the local time in India.

Find the time in Japan when it is 21 45 in India.


.....[1]

8 Mia changes \$350 into euros. The exchange rate is \$1 = 0.92 euros.

Calculate the amount Mia receives.

..... euros [1]

NOT TO SCALE

ABC is a straight line. BD is parallel to AE.

(a) Find the value of x. Give a geometrical reason for your answer.

$$x = \dots$$
 because [2]

(b) Find the value of y.
Give a geometrical reason for your answer.

$$y = \dots$$
 because [2]

10 Solve.

$$4p + 11 = 25$$

$$p = \dots$$
 [2]

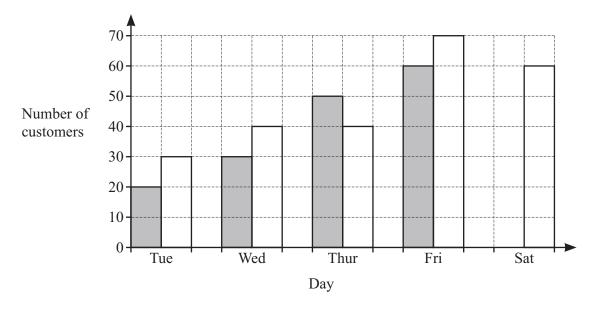
11 (a) Expand and simplify.

$$5(x-2)+3(x-7)$$

7

.....[2]

$$4a^2 + 16a$$


(b) Factorise.

[2]

12 Kai opens his restaurant from Tuesday to Saturday each week. He counts the number of customers each day for two weeks.

The bar chart shows some of the results.

8

Key: = Week 1 = Week 2

(a) In week 1 there were 200 customers in total.

Complete the bar chart.

(b) Write down the mode for week 2.

.....[1]

(c) Find the mean number of customers for the 5 days in week 2.

.....[2]

- In May a shop makes a profit of \$542. In June the shop makes a profit of \$600.
 - (a) Calculate the percentage increase in the profit from May to June.

 %	[2]

(b) The shop gives $\frac{2}{5}$ of the profit from May to a charity. Find the amount the shop gives to the charity.

	г	1	٦
•	 1	П	
~	 L	-	J

(c) The shop spends 38% of the profit from June on a fridge. Find the amount the shop spends on the fridge.

Meg invests \$2500 at a rate of 4.6% per year simple interest.Calculate the total amount of her investment at the end of 3 years.

15 The table gives information about the costs of hiring bikes.

Type of bike	Cost for first day	Cost for each extra day		
Road	\$25	\$20		
Mountain	\$40	\$35		
Electric	\$70	\$50		

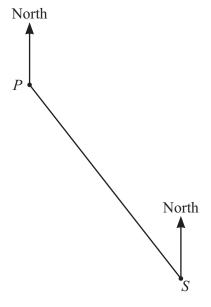
10

(a) Work out the cost of hiring 2 road bikes for 3 days.
--

Φ	LJ.
Ф	 [4

- **(b)** The cost, M, of hiring a mountain bike for d days can be written as M = 35d + 5.
 - (i) Write a formula for the cost, E, of hiring an electric bike for d days.

$$E = \dots$$
 [2]


(ii) The cost of hiring an electric bike for 6 days is the same as the cost of hiring a mountain bike for *d* days.

Find the value of *d*.

$$d =$$
 [3]

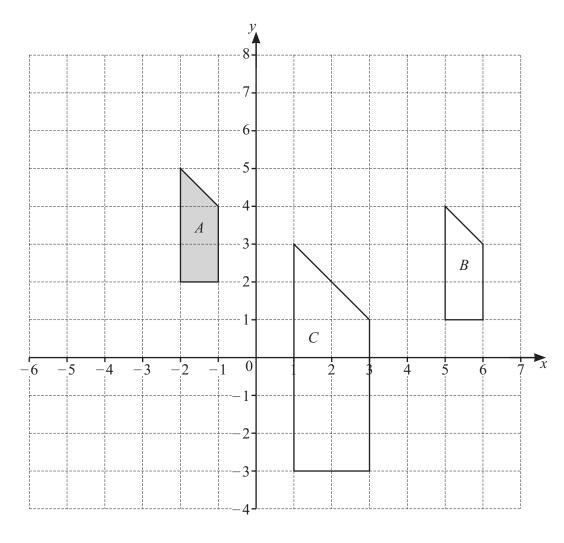
16 The scale drawing shows a path from *S* to *P*. The scale is 1 cm represents 2.5 km.

11

Scale: 1 cm to 2.5 km

(a) Work out the actual distance between S and P.

km [2]		
------	---	---	--	--


(b) Measure the bearing of S from P.

(c) E is 20 km from P on a bearing of 070°.

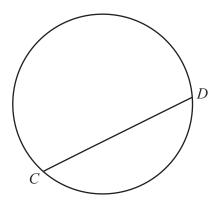
On the scale drawing, mark the position of E.

[2]

12

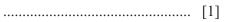
(a) Sue describes the **single** transformation that maps shape A onto shape B as a translation by the vector $\begin{pmatrix} 7 \\ 1 \end{pmatrix}$.

Explain why Sue is incorrect.


......

- **(b)** On the grid, draw the image of shape A after a rotation of 90° anticlockwise about (0, 0). [2]
- (c) Describe fully the **single** transformation that maps shape A onto shape C.

.....[3]


18 (a)


13

Points *C* and *D* lie on the circle.

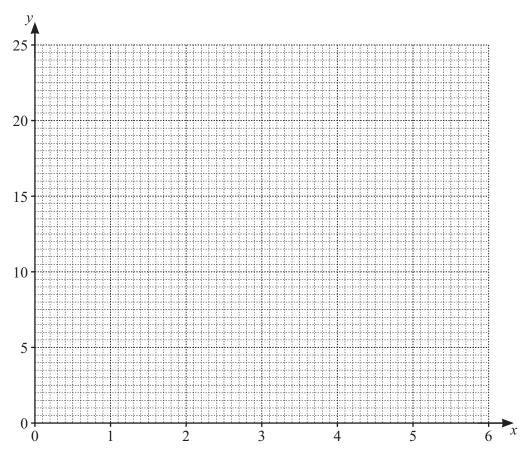
Write down the mathematical name for the line CD.

(b) The diagram shows a circle with centre O.

Points K, L and M lie on the circumference of the circle.

Draw triangle KLM so that angle $KLM = 90^{\circ}$. [1]

[2]


[3]

19 (a) Complete the table of values for $y = \frac{20}{x}$.

x	1	2	3	4	5
y	20	10			4

(b) On the grid, draw the graph of $y = \frac{20}{x}$ for $1 \le x \le 5$.

(c) Use your graph to solve the equation $\frac{20}{x} = 8$.

 $x = \dots$ [1]

20 A spinner is numbered 1, 2, 3, 4 and 5.

Rinesh spins the spinner many times.

He works out the relative frequency that the spinner lands on each number.

Number	1	2	3	4	5
Relative frequency	0.15	0.22		0.26	0.25

15

(a) Complete the table.

[2]

(b) Rinesh spins the spinner another 1500 times.

Calculate the expected number of times the spinner lands on 2.

.....[1]

[2]

21 (a) These are the distances above the surface of the Earth of five satellites, *A*, *B*, *C*, *D* and *E*. Each distance is in kilometres.

16

(i) Write these distances in order, starting with the shortest.

....., shortest [2]

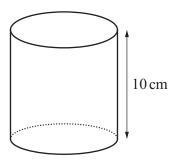
(ii) The radius of Earth is 6370 km. Satellite *A* is *k* times further from the **centre** of Earth than satellite *D*.

Show that k = 6.11 correct to 2 decimal places.

(b) A satellite travels at a speed of $27\,000\,\text{km/h}$.

Find the distance the satellite travels in 95 minutes.

.....km [2]


(c) A different satellite travels at a speed of 25 200 km/h.

Convert this speed into m/s.

..... m/s [2]

The diagram shows a solid cylinder with height 10 cm.

17

NOT TO SCALE

The volume of the cylinder is $478 \, \text{cm}^3$.

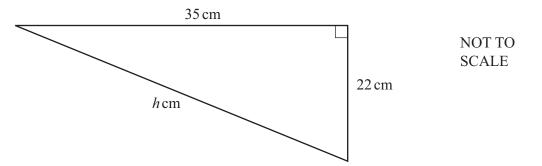
(a) Find the radius of the cylinder.

..... cm [3]

(b) The cylinder is made from gold.

The density of the gold is 19.3 g/cm³.

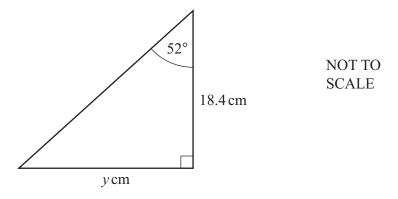
Calculate the mass of the cylinder.


$$\left[Density = \frac{mass}{volume} \right]$$

.....g [1]

© UCLES 2025

23 The diagram shows a right-angled triangle.



18

Calculate the value of *h*.

$$h = \dots$$
 [2]

24 The diagram shows a right-angled triangle.

Calculate the value of *y*.

$$y = \dots$$
 [2]